In vivo measurement of brain extracellular space diffusion by cortical surface photobleaching.
نویسندگان
چکیده
Molecular diffusion in the brain extracellular space (ECS) is an important determinant of neural function. We developed a brain surface photobleaching method to measure the diffusion of fluorescently labeled macromolecules in the ECS of the cerebral cortex. The ECS in mouse brain was labeled by exposure of the intact dura to fluorescein-dextrans (M(r) 4, 70, and 500 kDa). Fluorescein-dextran diffusion, detected by fluorescence recovery after laser-induced cortical photobleaching using confocal optics, was slowed approximately threefold in the brain ECS relative to solution. Cytotoxic brain edema (produced by water intoxication) or seizure activity (produced by convulsants) slowed diffusion by >10-fold and created dead-space microdomains in which free diffusion was prevented. The hindrance to diffusion was greater for the larger fluorescein-dextrans. Interestingly, slowed ECS diffusion preceded electroencephalographic seizure activity. In contrast to the slowed diffusion produced by brain edema and seizure activity, diffusion in the ECS was faster in mice lacking aquaporin-4 (AQP4), an astroglial water channel that facilitates fluid movement between cells and the ECS. Our results establish a minimally invasive method to quantify diffusion in the brain ECS in vivo, revealing stimulus-induced changes in molecular diffusion in the ECS with unprecedented spatial and temporal resolution. The in vivo mouse data provide evidence for: (1) dead-space ECS microdomains after brain swelling; (2) slowed molecular diffusion in the ECS as an early predictor of impending seizure activity; and (3) a novel role for AQP4 as a regulator of brain ECS.
منابع مشابه
Enhanced macromolecular diffusion in brain extracellular space in mouse models of vasogenic edema measured by cortical surface photobleaching.
Diffusion of solutes and macromolecules in brain extracellular space (ECS) is important for normal brain function and efficient drug delivery, and is thought to be impaired in edematous brain. Here we measured the diffusion of an inert macromolecular fluorescent marker (FITC-dextran, 70 kDa) in the ECS by fluorescence recovery after photobleaching after staining the exposed cerebral cortex in v...
متن کاملNeuroprotective Effect of Mitochondrial Katp Channel Opener Upon Neuronal Cortical Brain of Rat Population
Purpose: So far there is no effective drug therapy to prevent neuronal loss after brain stroke. In the present study we studied effects of The Mitochondrial K-ATP channel regulators on neuronal cell population and neurological function after ischemia reperfusion in the rat. Materials and Methods: Rats temporarily subjected to four vessels occlusion for 15 minutes followed by 24 hours reperfusi...
متن کاملP29: Changes in Thickness and Intelligence
Neuroimaging research indicates that human intellectual ability is associated to brain structure including the thickness of the cerebral cortex. Most studies show that general intelligence is positively associated with cortical thickness in areas of association cortex allocated throughout both brain hemispheres. Changes in cortical thickness over time have been related to intelligence, but whet...
متن کاملFast Optical Tracking of Diffusion in Brain Extracellular Space
1. Introduction Extracellular space (ECS) surrounds neurons and glia cells of the brain. This labyrinth filled with cerebro-spinal fluid provides an environment in which signaling and nutrient molecules diffuse. Diffusion is thus very important for the brain's well being and its measurement can provide important clues about the brain function under normal conditions and in certain pathological ...
متن کاملTest of the 'glymphatic' hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma
Transport of solutes through brain involves diffusion and convection. The importance of convective flow in the subarachnoid and paravascular spaces has long been recognized; a recently proposed 'glymphatic' clearance mechanism additionally suggests that aquaporin-4 (AQP4) water channels facilitate convective transport through brain parenchyma. Here, the major experimental underpinnings of the g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 37 شماره
صفحات -
تاریخ انتشار 2004